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The problem of the group pursuit of a group of evaders who use the same control, in which the manoeuvrability of the evaders 
is higher, is considered. A position control is constructed which ensures a weak evasion (that is, the non-coincidence of the 
geometrical coordinates, speeds, accelerations and so forth) of all the evaders. �9 2006 Elsevier Ltd. All rights reserved. 

Evasion problems for a single evader who possesses a greater manoeuvrability, with discrimination of 
the pursuers, were considered earlier in [1, 2]. Problems of the group pursuit of a single evader by 
different types of pursuers subject to a discrimination condition for the evader were presented in 
[3, 4]. This paper extends the results, obtained earlier in [5] for simple motions of the evaders, to the 
case of more general motions. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A differential game F of n + m players is considered in the space R v (v > 2): n of these players are 
pursuers P1, P2, . . . ,  Pn and m are evaders El,  E2 . . . .  , Em with the laws of motion and the initial conditions 
(when t = 0) 

Henceforth, 

(p) _ (q) 
X i =Ui,  I1,,11_<1; yj =1), IIvlI<_~,, y~ (0 ,1 ) ,  p > q > l  

xla)(0) = X~, t x ~ P ,  y~C0)= Y~; X~i*Y~, ~ Q  
(1.1) 

i~ I = {1,2 . . . . .  n}, j = 1,2 . . . . .  m, c = 1,2 

P = {0,1 . . . . .  p - l } ,  Q = {0,1 . . . . .  q - l }  

Definition 1. The controls ui(t) and ~(t) from the class of measurable functions which satisfy the 
restrictions from (1.1) are called permissible controls. 

Definition 2. In the game F, there is a weak evasion if a permissible control 

V(t) = V(t, xlCO(t), ~ ~ P, y~[5)(t), ~ ~ Q) 

is found for any permissible controls ui(t ) such that 

(1~) (13) 
X i ( t )~y j  (t), ~ Q foral l  t~  [0,.o) 
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The actions of the evaders can be treated as follows: there is a centre which, using the quantities 
{x}a)(t), a s P, yJ~)(t), [3 e Q}, at each instant of time t > 0, chooses the same control "o(t) for all the 
evaders Ej. 

2. T H E  CASE W H E N  m = 1 

We will construct a permissible control v(t) which ensures a weak evasion in the problem with a single 
evader El. In this action, we will omit the subscriptj  = 1 in relations (1.1). 

It follows from the possibility of a weak evasion when v = 2, that is, the case of a plane, that a weak 
evasion is also possible when v > 2. In fact, if v > 2, we choose a plane II such that H(X/13) r FI(Y~), 
[3 ~ Q, where, by H(z), we mean the projection of the point z ~ R v onto the phase II. Such a plane is 
found the virtue of the finiteness of the number of pursuers n. If the problem of the weak evasion of 
the projections of the evaders from the projections of the pursuers is solvable, then the initial problem 
is also thereby solvable. Next, in section, we consider v = 2. 

We shall denote the c-coordinate of the vector z ~ R v by Zc. 
We define the functions 

(q- (q- l~(t){ec(t)} - amount ot ~ I : xca l)(t) < {=}Yc 1)(0 

for all t > 0 and introduce the positive constants 8c, Pc, Yc such that 

2 2 
7 2 ~ < y ,  Yc = ~c +2pcn +pc/4, 8 c - p  J 4 > 0  

We define a set 

(2.1) 

f2c(t) = {8c+ 2Pclc(t) + 2pck, k = O, 1 . . . . .  ec(t)} 

and the quantity o3c(t ) ~ f~c(t) for each instant t ~ [0, oo) as follows: ifec(t ) = 0, then o3c(t ) = 8c + 2pclc(t); 
if ec(t) > 1, then o~(t) is determined from the condition 

(q) (q) 
rain { o)c( t ) -xc~( t  ) } = max rain {Ico-xca(t )  }>Pc  (2.2) 

O~ ~ Ec(t  ) oJ ~ i'~c(t)ot ~ Ec(t  ) 

where Ec(t ) = {[3 ~ I: x~qf l)(t) = y~q-1)(t) } and, consequently, IEc(t) l = ec(t). 
Estimate (2.2) follows trom a well-known result [5, Lemma 2.1]. 
To be specific: if several values of O~c(t ) exist, we take the largest of them. The quantity o~c(t ) is therefore 

uniquely defined for all t _> 0 and 

o~c(t)~ f~* = {~c+ 2pck, k=O,  1 . . . . .  n} (2.3) 

We denote a sphere of radius p with its centre at the point o by ~b(o, P) and also introduce the notation 

k x p - r - I  y q - r - I  
aIkl a 

=~.I' Z ( t 'T)  = Z xlr+k)(t)T[k]' E ( t 'T)  = Z Y(r+k)(t)T[kl 
ir  k = O  r k = O  

Lemma 1. The following holds for all t > 0, T > 0 and r ~ Q: 
(1) the attainability domain x} r) at the instant t + T coincides with the set 

(t, T), T [p-rl 
\ ir  

(2) Suppose a~c(X ) = a~c(t ) for all z ~ [t, t + T]. Then, 

Y 

y(cr)(t + T) = Z ( t ,  T) + 1)c(t)T [q-r] 
c r  
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We define the functions Zcir(t ) >-- 0 as the time after which the c-coordinatesx} r) andy (r) can be identical 
for the first time, that is, the equality 

(r) Aci (t + Tcir(t)) = 0 ,  w h e r e  A i ( t )  = y ( t ) - x i ( t  ) 

can be satisfied subject to the condition that %(x) = a)c(t ) for all x s [t, oo). It follows from Lemma 1 
that the value of rcir(t ) for all t e [0, ~ )  and r e Q is determined as the least non-negative (with respect 
to 7) root of the polynomial 

p - r - I  
(r + k) . . . .  [k] 

-sign(A(c~)(t))T[P-r]- Z Xci U)"  + 
k = q - r + l  

q - r - 1  

+(v~(t)-x~q)(t))Ttq-d + Z A(c~+k)(t)Ttkl +A(r)(t~ c i ,  * = 0 (2.4) 
k = l  

Such a root exists since Eq. (2.4) can be represented in the form 

T P - r + a l T P - r - l + . . . + a p _ r _ l  T = ap_ r, where ap_r>--O 

Suppose 

Tcr(t) = min{Tclr(t), Tc2r(t) ..... Tcnr(t)} (2.5) 

We define the functions 

y x 

~ir(t ) = Z( t ,  Tcir(t))+(Vc(t)+ ~)T~qrr](t ) _ Z( t ,  Tcir(t))T. TcirIp-d .,(,, 
cr cir 

t l ,  if A(c~)(t)<O and ~+~ir(t) >0 
K~ir(t) = 1, i f  A(c~)(t) > 0 and ~cir(t) < 0 

otherwise 

(2.6) 

for all t e [0, oo) and r E Q. 

Lemma 2. Suppose the evader E 1 uses an arbitrary constant control. Then, the following assertions 
hold for any permissible control ui(t ) of a pursuer Pi and r ~ Q. 

1. If, for t > 0 and a certain G > 0 when x E [t - C, t), 

A(c~)('C)<0{>0}, A(c~)(t)= 0, A~)(1;)~0, A(r)(t)~0 (2.7) 

then a e e (0, G] is found such that, for "c ~ [t - e, t), 

Kcir('C) = 1 { = - 1 } ,  Tdir('O> Tclr(~ ), d ~ { 1 , 2 } \ { c }  

2. If, for t > 0 and a certain G > 0 when "c e [t - o, t), 

(r) Alr)(t) o Aci (X) ~ O, = 

then e e (0 ,  G] is found such that, for "c ~ [t - e ,  t ) ,  

Klir(X);~O, T2ir('{)>_Tlir(T,)>O or K2ir('Q~O, Tlir('Q>_T2ir('Q>O 

Proof. The continuity of the functions Tlir('r r2/r('~), for all "c e [0, oo) follows from relation (2.4) 
and the conditions of the lemma. 
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1. Suppose  that,  when  the "less than"  sign is chosen in the first of  them,  re la t ions (2.7) are satisfied. 
In  this case ,  Zcir(t ) = 0, Zdir(t ) > 0 and, on the taking account  of  the continuity of  these functions,  we 
obtain  that  a 13 ~ (0, ~] exists such that  

Pc ( q - r ) !  p-q _,  
Tdir(X ) > Tcir('[), "~ > - -  - 2 ( p _ r ) ! T c i  r ('~), z ~  [ t - E , t )  

It  follows f rom the definit ion of  (2.6) that  gcir('~ ) = 1, T, E [t, -- ~, t) i f  ~ + r ( ' l ; )  ~ 0 which is equivalent  
to the inequali ty 

y x 
"s [q - r] 

( (?( ' [ ,  Tcir('Q) + l)c( )Tci r ('[)l--(~ir ('t' Tcir('C))- T~Pr-rl('f)/) + 

Pc (q=r)!  p - q  _ x '~ [q - r ] , _x  
+ ( ~  - 2(p _ r)------7. Tr (W)'c~r t~J >- 0 

which is satisfied since the first t e rm  is equal  to zero by vir tue of  the definit ion of  the funct ion Tcir(X) 
and the second t e rm is non-negat ive  according to the choice of  13. The  remain ing  case is cons idered  in 
a similar way. 

2. Taking account of  the continuity of  these functions Tcir("C ) > 0, "~ E [t - ~, t), Tcir(t ) = 0, a 13 ~ (0, ~] 
exists such that  

Pc(P - r)[) I/(p- q) 
16(q-~t . J  > Tctir(T') >- T~ ir('~) >0; ~ = 2, 13 = 1 or  ~ = 1, 13 = 2 

for  all x ~ [t - 13, t). 
In  a similar m a n n e r  to Asser t ion  1, it is p roved  for  such 13 that  gcir(X ) =it= 0 when  x ~ [t - 13, t). 
We will now define the funct ions 

J c i r ( t )  = min{Tdaf~(t) : (d, Ix, ~) e { 1, 2} x I x  Q and (d, Ix, [~) ;e (c, i, r)} 

1, if Kcir(t ) 4= O, Jcir(t) > Tr ) = Tcr(t ) 

~ B l a ~ ( t  ) = B2al3(t ) = 0 ,  w h e n  c = 2 and Blar( t  ) = 0 
Bcir(t) = | f o r a l l  I x ~ l ,  ~ { r + l , r + 2  . . . . .  q - l }  

1 
L0 in the remain ing  cases 

for  all t > 0 and r ~ Q. 
It  follows f rom L e m m a  2 that  no m o r e  than  one  of  the 2q-functions Bci  r becomes  equal  to unity in 

the case of  fixed i at each instant  t > 0. 
We define the functions vc(t) as follows: 

c 

re( t )  = I O)c('~2b)' t ~  ['lT;b, X2b+l ) 
c c 

L r + 1) + Kcar('[2b + I ) 9 r  
c c 

t ~  [172b + i, 172b+2) 
(2.8) 

where  x ~ + l  > 'l;~b is the instant when  Ix ~ I, r ~ Q are first found  such that  

r r 
Bc~xr(T,2b+ l) = 1 ,  "Od(X2b+ l) E f ~  (2.9) 

and x~b+2 > x ~  + 1 is the instant  when,  for  the first t ime, for  at least one  13 ~ I,  

A(r)g_c x 
d~C~2b+2) = 0 (2.10) 

Here ,  "c~ = 0, d ~ {1, 2}\{c}, b = 0, 1, 2, ... and,  to be  specific: if several  Ix ~ I are found which satisfy 
the p rope r ty  (2.9), then  we take the least  of  them.  

We now define the sequence  t~ : t~ = 0; X~+l > t c b-1 is the instant  when  r = q - 1 in a lgor i thm 
(2.8)-(2.10) for  the first t ime and then  t~, = x~+2 (b = 1, 2, .. .). 
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�9 c TM bc 
H e n c e f o r t h ,  we shal l  a s s u m e  tha t  the  co n t ro l  ~( t )  = 0 h ( t ) ,  (v2(t))  T a n d  the  s e q u e n c e  i ' tb tb  = 0 a re  

de f i ned  acco rd ing  to a l g o r i t h m  (2 .8 ) - (2 .10)  w h e r e  e i t he r  b~ < ~ o r  b~ = ~ a n d  the  s e q u e n c e  
b* �9 c ~ b c  . C C 

{ ' C b } b  = 0  C ~tT, b.~ b =0 IS de f ine  as de sc r ibed  above  w h e r e  e i t he r  b* < ~ o r  b* = oo. 

L e m m a  3. T h e  fo l lowing  asse r t ions  ho ld  for  any  p e r m i s s i b l e  con t ro l s  ui( t  ) .  
b 2 b 2 1 1 2 2 ( r )  c 

1. I f  bc --- 2, t h e n  {'~2b}b = 1 f3 {X2b}b = 1 = ~ a n d  Aci ( t)  , 0 for  all  r e Q ,  t e (X2b, "(2b + 2), b = O, 1 . . . . .  

b 2 - 1 w h e r e  b 2 = en ter[bc /2] .  
�9 c~ bc 

2. T h e  i nc lu s ion  Vc(X) e [~r - Pc~4, Tc], w h e r e  "c e VCb?b = 0, holds .  
3. I f  bc = ~ ,  then ,  also b* = ~ ,  
4. Vc(t~) - pc~4 <- v j t )  < Vc(t~) + pc~4 for  all  t e [t~, t~ + 1)- 

Proof. Assertion 1 follows from a well-known result [5, Lemma 3.2]. 
Assertion 2 follows from the fact that, according to relations (2.3) and (2.8)-(2.10), 

V~(X2b) e n*  C [6r ~ + 2p~n], V~('~b + ~) = V~(X~b) + p J4 e [6~-- p J4, y~] 

I§ { X ~ b } ;  0 '  whence bc* = ~ .  Suppose q 2. Let us assume We will now prove Assertion 3. If q = 1, then X'bJb = 0 = = = 
that, contrary to the assertion, bc = ~,, bc* < 0% and a number  N is then found such that, for any b > N, we have 
Br + 1) = 0, ct e I and that, for just one ~ ~ I, Bc~o('CC2b + 1) = 0. It follows from Assertion 1, without loss in 
generality, that a number  k ~ {0, 1 . . . . .  n} is found such that 

Xc I(t) , -~c2( t ) . . . . .  YCck(t) < Yc( t ) < YCck + I(t), Xck + 2(t) . . . . .  ~r 

for all t _> '17~( N + 1)" 
If follows from the last fact that a number  M exists such that 

x c , ( t ) ,  Xc2(t ) . . . . .  Xck(t) < Yc( t ) < Xck + I(t), Xck + 2(t) . . . . .  Xcn(t ) 

for all t > xC2(N + M). 
On combining the two inequalities for t >- X~2(N + ~ ,  we obtain bc < ~ .  This contradiction completes the proof. 

The case when q > 3 is treated in a similar manner.  
We will now prove Assertion 4. Suppose 

r r r c c r c 
t b = " C 2 N ~ ' C 2 N + I < T , 2 ( N + I ) < _ ' C 2 ( N + I ) + I < . . . < ~ 2 ( N + M )  = t b +  I 

Then, using Assertion 1 and algorithm (2.8)-(2.10), we obtain 

O c ( t ~ )  c r c c c 
= Oc('l~2N), D c ( I ~ 2 N + I )  = 1 ) c ( t b ) + p c / 4 ,  --  1 ) c ( X 2 ( N +  I ) )  = 1 ) c ( l b )  . . . .  

r c 
D c ( T , 2 t N + M _ I )  ) = Uc(tb), Dc(q~2(N+M-I)+I) = Oc(tb)+Pc/4 

whence it follows that Assertion 4 holds. 

We  will n o w  prove  tha t  a l g o r i t h m (2 .8) - (2 .10)  d e t e r m i n e s  ~( t )  = 091(0, ah(t))  T for  all t ~ [0, co). To 
do  this, it is suff ic ient  to  p rove  the  fo l lowing  l e m m a ,  

L e m m a  4. F o r  any  set  o f  pe rmi s s ib l e  con t ro l s  ui( t )  of  the  p u r s u e r s  Pi e i the r  the  va lue  of  bc is f in i te  
o r  lira x~ = ~,, w h e n  b ~ oo. 

Proof.  Consider the case when c = 1. Only one of two cases is possible for each set of permissible controls ui(t ). 

Case 1. Algorithm (2.8)-(2.10) is applied a finite number  of times and therefore the value of bl is finite. 

Case 2. Algorithm (2.8)-(2.10) is applied an infinite number  of times. It is required to show that the sequence 
{Xbl}ff= 0 obtained using this formula possesses the following property: limx~ = ~ when b --+ ~,. Let us assume that 
the opposite is true: a set of permissible controls u*(t) exists such that 

�9 1 
h m %  = "r < ,,,, w h e n  b - ~  
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1. We consider the numbers x~ q- 1)(,~,) .  Suppose they take r e l different  values ~ < ~2 < " "  < ~0" Without  loss 
of generality, we will assume that  

x(t ] -  ~  = ~k, s ~ St,, where 

Sk = { s k _ l + l , s ~ _ ~ + 2  . . . . .  Sk}, k = 1,2 . . . . .  r (so=O, s r = n  ) 

For each e = [0, x*], we define the sets 

Hk(s ) ~.1 {Z ~ R ~ (q- = :Z=X~s O( t ) , t~  [X*-e ,X*]} ,  k = 1,2 . . . . .  r 
s~  S~ 

Suppose G~, G2 C R 1. We will use the notat ion 

dist(Gt, G2) = inf Ig~ - g21 
g~ ~ G~,g2~ G 2 

h(e) = min{dist(Hk(e),  Hi+ ~(e)), k = 1, 2 . . . . .  r -  i } 

H(e)  = h ( e ) - 2 y ~ e ,  e r  [0, x*] 

By virtue of the continuity of the function H(e) and the condit ion h(0) > 0, we obtain that  a E1 > 0 exists such that  
H(e) > 0 for all e ~ [0, el] and, from this, that  

h(e)lyt  > 2 e  fora l l  e ~  [O,e~] (2.11) 

2. If [S~ [ = 1, we put  e2 ~ = ~ .  Suppose ] S~ [ > 2 and t~, 13 e S~. 
We note that  

(q - (q - 

x]a J)(~*) = x113 I)(x*) = ~k (2.12) 

Using the notat ion T = [x* - e, x*), T = [x* - e, x*], we pick out  all possible cases of the mutual  ordering of the 
value~ ~(q- l) ~(q- ~) ~(q) ~(q) 

~  ' ~ 1 ~  ' ~ l c t '  ~113" 
(q) * > (q) * (2.1) x]a ( x )  xl~ ( x )  and, by virtue of the continuity of these functions, and e > 0 exists such that  

x l a ( t ) >  7' 

Fur thermore,  when account is taken of equality (2.12), we have 

( q -  t ) ( t  ) (q - t xla  <Xll 3 )(t), t ~  T 

(2.2) ~la~(q)r**~ j < x~)(x *) and, in the same way as in case (2.1), an e > 0 exists, such that  

(q) 
X|IX( / )  < X(l~)(t), t E T, Xl0 t(q- l)(t)> X(l~- |)(t), /'E W 

(2.3) xfq):'~*~1~ ~" : = x]~)(z*) and this case has several versions: 

(2.3.1) an ~ > 0 exists such that xl~(t ) = x~)(t), t~ T and, then, x~ q- O(t) = x~-1)(0, t ~ T also. 
(2.3.2) an e > 0 exists such that xl~(t ) > x~)(t), t~ Tand, then, as in case 2.1,x~q-1)(t) < x~q~-1)(t), t ~ T. 
(2.3.3) an e > 0 exists such that  x~q)(t) < x~q~)(t), t ~ T and, then, as in case 2.2,x~q-1)(t) > x~- l ) ( t ) ,  t ~ T. 

Now, on picking out all the x~ q- ]), x (q)~ , s ~ Sk in pairs ~'~ ~tc~v(q 1),-]~(q-~), x(q)la, x(q)~l~, " ~  ~ obtain that  a e~ > 0 exists 
such that  the natural  ordering of x~ q- 1) and x(q)l~, s ~ Sk does not  change in the interval [x* - e~2, x*). Without  loss 
of generality, this last fact means that  

' q -"  
Xlsk-I  + 

; q '  . . , +  , .  2(,). 
t ~ [x* - E~, x*) (2.13) 

Here,  { <=  }, { >=  } means tha h ei ther the < (> )  sign or the = sign is chosen in the first (second) row of the formula 
over the whole interval [z* - ~ ,  z*). 

1 2 r We choose E 2 = min{e2, e2 . . . . .  ~2,} > 0. 
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3. It follows from the continuity ofx(lq)(t) that  a e~ > 0 exists such that  

[ X ( l q ) ( , t , -  I ~ , ) ( q ) ~ _ ,  i - x l i  tx - e " ) [ < O t / 4  fo ra l l  e ' , e " e  [O, e3) (2.14) 

We now take E 3 = min{e31, e3 2 . . . . .  e~} > 0. 
4. We define 

e* = min{ev e 2, e3} > 0 (2.15) 

It  follows from the assumption of the existence of a finite limit of the sequence {xl}ff= 0 that, up to the instant 
x* - e* < x*, the control  ~l_qt) is defined and a number  N exists such that t 1, t r + a . . . .  e [x* - e*, x*] where, according 
to Lemma 3, {t~}~= 0 C {Xb}~= 0. 

We will now consider a game F starting from the instant z* - e* and we will prove that  a number  M is found: 
t(% + :vO > z* and by this means we obtain a contradict ion to the supposit ion concerning a finite value of lim x 1 
when b ~ 0% and the lemma will be proved. 

So, the instant tlN ~ [X* - e*, Z*). I t  is necessary that  y(lq- t)(tN x) ~ Hk(e*) for a certain k ~ {1, 2 . . . . .  r}. 
We recall that 

x lq - I ) ( / )E  Hk(Iz*), t ~  [ 'c*-E;*, 'c*],  s ~  S k 

and that  just one ct e Sk exist such that  y~q-X)(tNa ) -- X (q- t)t" 1~ -- let k~Nl" 
If  follows from condit ion (2.2) that  two cases are possible. 

(4.1) "" t ' l  h > ~ (q )  ,,lVSS - ~14 (t]v) + p~, where ~x is one of the several successive subscripts from Sk. 
It follows from the Lemma 3 that  

I ul(t I)  - pl /4  < Or(t) < Dl( t / )  + p l /4 ,  t e [t~v, tN+ I) 

Taking account of relations (2.14) and (2.15), we conclude from this that  

(q) 1 I 
U l ( t ) > x l a ( t ) + p l / 2  fo ra l l  t r  [tN, t~+l )  (2.16) 

According to relat ion (2.13), one of the following two equalities must be satisfied at the instant t~v+ 1: 

(4.1.1) y~q-1)(tlN § 1) = X(1 q- l)(t~v + 1) and this case is impossible by virtue of inequality (2.16); 

(4.1.2) y~q-l)(t~v + 1) = x(lq~ - 1)(t~ § 1), I 3 > ct ([3 is one or several successive subscripts from Sk). 
So, the case 4.1.2 remains. Consider  the system of inequalit ies 

,q) I (q) o,(t)_P1~ ,q, [Xl l~( tN+l)_Xl~( t )  [ Pl > X(l~)(t), < ~ ,  > x la ( t )  t ~ Its, tN§ I ) (2.17) 

The correctness of the first inequality follows from relations (2.14) and (2.15), and the correctness of the second 
chain of inequalities follows from relations (2.16) an d(2.13). F rom system (2.17), we obtain that  

x(q)r 1 Vl( t )>  ii~t N+1)+91/4 ,  t ~  [tN, tN+l)  

and, therefore,  the value of ,l(t~v + 1), according to algori thm (2.8)-(2.10), will be defined so that  

I > ( q ) .  I . 
1)t (tN+ l) - xll~ tt/v+ t) + P| 

Continuing further,  we obtain that  an instant t~v + L exists such that  

y ( i q - l ) .  I . x ( q - I ) .  I . 1 > ( q ) .  1 . 
( t N + L )  = lsk ( t N + L ) '  1 ) I ( t N + L ) - - X l s k t t N + L ) + P l  

from which we obtain that 

1 x~q- I ) ( t )<y~q- l ) ( t ) ,  t e  (t/v+/.,X*], s e  S k 

1 This means that, in order  for tu  + L § 1 ~ [Z* - e*, X*), it is necessary that  the following inequality be satisfied 

y(l q -  I ) r  , ( q -  l ) f ~ l  x 
~,gN+L+I) = XII1 ~ IN+L+I)  , I~E I~S k 

and this means that  the value ofy~ q- 1) from the set Hk(e*) must fall within the set Hk + l(e*). It follows from equality 
(2.11) that, even in the case of the maximum value o f ~ l  which, according to L e m m a  3, is equal to 3'1, a t ime greater  
than 2e* is required for this, from which t~v + L + 1 - t~v + L > 2e*. So, a number  M = L + 1: t~v + M > X* exists. 
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(4.2) tll(t 1) < X (q) (t I ~ - - la . . . .  Pl. The existence of the number M is proved in the same way. 
The case c = 2 is treated similarly. The lemma is proved. 

It follows from Lemma 3 and 4 that the inclusion 

v~(t) ~ [8 c - p J4,  ~,~] for all t e [0, -0) (2.18) 

is satisfied in the case of the functions ~c. 
The strategy of the evader E~ is therefore determined; at each instant of time t > 0, the evader E1 

determines the functions a~l(t) and ~2(t) and thereby completely defines his control a)(t). 

Theorem 1. In game F, when m = 1, weak evasion from any initial positions occurs. 

Proof. We will now prove that the strategy of the evader, defined by algorithm (2.8)-(2.10), is a eak 
evasion strategy. Actually, the control ~ belongs to the class of piecewise-constant functions and changes 
in value at the instants {x~}~l= o t_J { ~ } ~  0. Using relations (2.18) and (2.1), we obtain 

2 2 
Ilv(/)ll -< ~ ---T 

The satisfaction of the condition x}r)(t) ~ y(r)(t) for all r ~ Q and t > 0 follows from Lemmas 3 and 4. 

3. THE CASE W H E N  m_>2 

We will now define a weak evasion strategy for a group of coordinated evaders Ej. 

Theorem 2. In game F, a weak evasion occurs from any initial positions. 

Proof. We define a game F1 of n m +  1 players in the space RV: nm pursuers P{ and an evader with 
laws of motion and initial conditions (when t = 0) 

x(p) ij ~" ll i '  Ilu,II-< l; y(q) = w, Ilw[[ < V 

xij (0) xij (0) = x i ,  y(13)(o) = 0, ~ Q, a ~  P\Q 
(3.1) 

For all permissible controls ui, w, numbers r e Q and t > 0, we have 

p - I  t 

xij(r)(t) = Z (~) . . . .  [k-rl + J f ( t -  x ) [ P - r - l l u i ( x ) d  T X O tU)t = 
k = r  0 

q - I  p - I  

= E ( X ~ -  Y~)t [k-rl = E X~t[k-r] 
k = r  k = q  

t 

y(r)(t) = ~ ( t -  "C) [q-r-  l lw(x)dz  

0 

t 

+ f ( t  - X) [p-r- l]ui(x)dz 
0 

In game Fa, the pursuers act in the following way: at each instant of time t e [0, ~) ,  each of the pursuers 
Pluses  the same control ui(t), chosen by the pursuer Pi in the game F. In this case, the following equality 
holds 

q - I  

xlr)(t) (r) y/k.t[k- r} = Xij ( t )+ ~ (3.2) 
k = r  

Suppose w(t) is a control which ensures a weak evasion in the game F1, which has been chosen by 
the evader at the instant of time t. Then, 

xl'f)(t) # y(r)(t) (3.3) 
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The existence of such a control follows from Theorem 1. 
We will now determine the control of the evaders Ej at each instant of time t ___ 0 in the following 

way: v(t) = w(t). In this case, 

q - I  
y~r)(t) = y<r)(t) + ~., rjt--k [k-r] (3.4) 

k=r 

Combining relations (3.2), (3.3) and (3.4), we obtain that 

x~r)( t )~y~r)( t ) ,  t ~  [ 0 , ~ )  
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