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The problem of the group pursuit of a group of evaders who use the same control, in which the manoeuvrability of the evaders
is higher, is considered. A position control is constructed which ensures a weak evasion (that is, the non-coincidence of the
geometrical coordinates, speeds, accelerations and so forth) of all the evaders. © 2006 Elsevier Ltd. All rights reserved.

Evasion problems for a single evader who possesses a greater manoeuvrability, with discrimination of
the pursuers, were considered earlier in [1, 2]. Problems of the group pursuit of a single evader by
different types of pursuers subject to a discrimination condition for the evader were presented in
[3, 4]. This paper extends the results, obtained earlier in [5] for simple motions of the evaders, to the
case of more general motions.

1. FORMULATION OF THE PROBLEM

A differential game T" of n + m players is considered in the space R’ (v 2 2): n of these players are
pursuers Py, Py, ... ,P,andm are evaders E, E», ... , E,, with the laws of motion and the initial conditions
(whent = 0)

(q)

xgp) = U; "u,“ < 1, y, =, "v“ SY9 Y€ (0, 1)9 p>q21

(1.1)
£20) = X2, aep, W0y =1 xf2¥ peo
Henceforth,
iel={1,2,..,n}, j=12..m c=12
P=1{01,.,p-1}, Q=1{01,..q-1}

Definition 1. The controls u;(t) and v(t) from the class of measurable functions which satisfy the
restrictions from (1.1) are called permissible controls. '

Definition 2. In the game T, there is a weak evasion if a permissible control
v(t) = v(t, ), ae P,yP ), e 0)
is found for any permissible controls u;(¢) such that

xSB)(t)¢y§B)(t), Be @ forall re[0,e)
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The actions of the evaders can be treated as follows: there is a centre which, using the quantities
{x§“)(t), oe P, y}B)(t), B € O}, at each instant of time ¢ > 0, chooses the same control v(¢) for all the
evaders E;.

2. THE CASE WHEN m = 1

We will construct a permissible control v(f) which ensures a weak evasion in the problem with a single
evader E;. In this action, we will omit the subscript j = 1 in relations (1.1).

It follows from the possibility of a weak evasion when v = 2, that is, the case of a plane, that a weak
evasion is also possible when v > 2. In fact, if v > 2, we choose a plane IT such that TI(X?) = [1(Y®),
B € Q, where, by I(z), we mean the projection of the point z € R" onto the phase I1. Such a plane is
found the virtue of the finiteness of the number of pursuers n. If the problem of the weak evasion of
the projections of the evaders from the projections of the pursuers is solvable, then the initial problem
is also thereby solvable. Next, in section, we consider v = 2.

We shall denote the c-coordinate of the vector z € RY by z,.

We define the functions

l.(t){e (1)} - amount o€ I: x(q'”(t)< (=1

co c

for all £ > 0 and introduce the positive constants 3., p,, ¥, such that

,/yf+y§$y, Y. = 6.+2pn+p. 4, 8.-pl4>0 2.1)
We define a set
Q.(1) = {8, +2p (1) +2p.k, k=0,1,...,e.(t)}

and the quantity w,(t) € Q(¢) for each instant ¢ € [0, ) as follows: if e.(f) = 0, then w.(t) = &, + 2p L (¢);
ife.(t) 2 1, then o.(¢) is determined from the condition

min {|w,()-x2(0]} = max min {|o-x2)|}2p, (2.2)

ae E (N we Q. (Hoe E(t)

where E(f) = {f e I xﬁ‘fi"l)(t) = y9"V(¢)} and, consequently, |E,()| = e(1).

Estimate (2.2) follows from a well-known result [5, Lemma 2.1].

To be specific: if several values of w,(f) exist, we take the largest of them. The quantity w,(¢) is therefore
uniquely defined for all > 0 and

o (e QF = {5,+2p.k k=0,1,...,n} (2.3)

We denote a sphere of radius p with its centre at the point o by 9(o, p) and also introduce the notation

k x p-r-1 y g-r-1
k r
a=%, Yun= Y £Pom™ Tan= 3 yrPmr™
’ ir k=0 r k=0

Lemma 1. The following holds for allt >0, T > 0 andr e Q:
(1) the attainability domain x§’) at the instant ¢ + T coincides with the set

91{2(:, T), T’ "]]

ir

(2) Suppose v.(t) = v.(t) for all T € [t,¢ + T]. Then,

y
YWa+T) = (6, T) + v ()14

cr
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We define the functions T;(¢) = 0 as the time after which the c-coordinates xl(’) and y® can be identical

for the first time, that is, the equality

AP+ T, (1) = 0, where A(t) = y(2) - x,(t)

can be satisfied subject to the condition that v.(t) = v () for all T € ¢, o). It follows from Lemma 1
that the value of T;(¢) for allz € [0, ) and r € Q is determined as the least non-negative (with respect

to T) root of the polynomial

p-r-1
—Slgn(A(r)(t))T[p r] z (’*k)(t)T[k]
k=g-r+1

g-r-1

+(0,(8) - xP T 2 AL*P

Lk] (r
T +A,;() =0

Such a root exists since Eq. (2.4) can be represented in the form

=20

p-r p-r-1 _
T° "+aqT t..+a, ., T=a pr

p-r Where a

Suppose
T,(t) = min{T,, (), T.5, (1), ..., T .. ()}

We define the functions

g (1) = Z(r T + (00 )TN0 - 30 T () 7 T 1)

cir

1, if AY()<0 and E!, ()20

cir

Kir(® =1-1,if AD(r)>0 and &,(1)<0

0 otherwise

forallte [0,)andre Q.

(2.4)

(2.5)

(2.6)

Lemma 2. Suppose the evader E; uses an arbitrary constant control. Then, the following assertions

hold for any permissible control u,(¢) of a pursuer P,andr € Q.
1. If, fort > O and a certain o > Owhent € [t - 0, f),

AD(1)<0{>0}, AL =0, APM)#0, AP =0
then a € € (0, 0] is found such that, fort e [t - &, ¢),
K. (1) = 1{=-1}, T (0)>T,(1r), de {1,2}\{c}
2. If, fort > 0 and a certain ¢ > Owhente [t -0, 1),
AD(1)20, A1) =
then € € (0, o] is found such that, fort e [t - ¢, 1),

K, ()20, To (2T, (1)>0 or K, (1)#0, T, (1)2Ty,(1)>0

@27

Proof. The continuity of the functions Ty;,(t), T5;(t), for all © € [0, ) follows from relation (2.4)

and the conditions of the lemma.
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1. Suppose that, when the “less than” sign is chosen in the first of them, relations (2.7) are satisfied.
In this case, T,;(t) = 0, T,;;(¢) > 0 and, on the taking account of the continuity of these functions, we
obtain that a € € (0, o] exists such that

P

Tyr())>Toi(0), 2 2§p :;'Tf,,"(t), te [1-g1)

It follows from the definition of (2.6) that K;,(1) = 1, T € [t, — &, £) if £%,(t) = 0 which is equivalent
to the inequality

y
([2(1 T (1) + V(DT "(r)] [Z(n T (%)= Teh, ”(r)]]

cir

Pe ,(g-N)' p-q {g-r]
+(F-2l= D)l M 20

which is satisfied since the first term is equal to zero by virtue of the definition of the function 7;(t)
and the second term is non-negative according to the choice of €. The remaining case is considered in
a similar way.

2. Taking account of the continuity of these functions 7,;,(t) > 0,t€ [t—0,¢), T;(f) = 0,ac € (0, o]
exists such that

(pc(p—r)!

p-q)
m) ZTair(T)ZTB,-r(T)>0; a=2, B =1 or a=1, B =2

forallte [t-¢,1).
In a similar manner to Assertion 1, it is proved for such € that K,(t) # O when t € [t - ¢, ¢).
We will now define the functions

Jeir(t) = min{T5(1) : (d, @, B) € {1,2} xIX Q and (d, 0, B) #(c, i, 1)}

1, if K, ()0, J, (02T, (t) =T.(1)

B, (1) = B ,p(t) = Byp(t) = 0, when ¢ =2 and By (t) = 0
forall ael, Be{r+1,r+2,...,q9-1}
0 in the remaining cases

forallt=0andre Q.

It follows from Lemma 2 that no more than one of the 2g-functions B,;, becomes equal to unity in
the case of fixed ; at each instant ¢ > 0.

We define the functions v.(f) as follows:

(1) = {‘Dc(Tgb)’ 1€ [Top Topa1) 28)
O (124 1)+ Keor(Tap0 DPS4, 1€ (T34, 15 Tapa2)
where 15,41 > 1% is the instant when o € I, r € Q are first found such that
Beor(Tape) = 1, 0y(T35, 1) € QF (29
and t%,47 > 1% 41 is the instant when, for the first time, for at least one B e I,
(r)(72b+2) =0 (2.10)

Here, 79 = 0,d € {1,2}\c},b =0, 1, 2, ... and, to be specific: if several o e I are found which satisfy
the property (2.9), then we take the least of them.

We now define the sequence ¢f : 15 = 0; 12k+1 > tj_; is the instant when r = g — 1 in algorithm
(2.8)—(2.10) for the first time and then ¢f = 15, (b = 1,2, ...).
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Henceforth, we shall assume that the control v(f) = (v,(¢), (v,(f))” and the sequence {‘c,i}’;” o are
deﬁned according to algorithm (2.8)—(2.10) where either b, < « or b, = « and the sequence
{‘cb} p=0C {‘cb}Z o is define as described above where either b} < e or b} = o,

Lemma 3. The followmg assertlons hold for any permissible controls u,(t).
1. Ifb,> 2, then {121,},,_1 N {),2, = @and AD() = @forallre Q,te (B, Bpr2),b=0,1,.
b? - 1 where b? = enter[b,/2].

2. The inclusion v.(1) € [8, - p./4, Y], where T € {rf,}lb)”= o> holds.
3. If b, = o, then, also b} = ,
4. Vt5) — p/h < V(t) < V(th) + p./4 for allt e [t5, 15 4 1)

Proof. Assertion 1 follows from a well-known result [5, Lemma 3.2].
Assertion 2 follows from the fact that, according to relations (2.3) and (2.8)-(2.10),

vc(‘t;b) € Q:: < [80’ 80 + zpcn]’ vc(T;b+ 1) = vc(T;b) * pc/4 € [5c - pc/4’ Yc]

We will now prove Assertion 3. Ifg = 1, then {tb}b o= {5}~ o> Whence b = o=. Suppose g = 2. Let us assume
that, contrary to the assertion, b, = o b < co, and a number N is then found such that, for any b > N, we have

B.01(t5+1) = 0, a € I and that, for Just one B € I, B.py(T5 +1) = 0. It follows from Assertion 1, without loss in
generality, that a number k € {0, 1, ... , n} is found such that

x“(’), xcz(t)v cey xck(t) <yc(') < xck+ I(t)’ xck+2(t)’ cee xcn(t)

forallz > T%(N+ 1)
If follows from the last fact that a number M exists such that

X (), %008y ooy X () <Y (1) < Xy 1 () Xog 2 s X, (8)

forallt> 1:2(N+M)

On combining the two mequahtles for ¢ > 5y + ar), We obtain b, < . This contradiction completes the proof.
The case when g 2 3 is treated in a similar manner.

We will now prove Assertion 4. Suppose

C c (4 (o C (4 c
B = NSO < S Towe 1< <Tawem = ha
Then, using Assertion 1 and algorithm (2.8)—(2.10), we obtain

vc(tz) = vc(T;N)* Dt(t;N«rl) = vc(tz)i-pc/4’ vc(T;(N+l)) = vc(’;)’

vc(Tg(N+M—l)) = V1), vc(T;(N+M—I)+1) = (1) 2 p /4
whence it follows that Assertion 4 holds.

We will now prove that algorithm (2.8)—(2.10) determines v(f) = (v1(t), v(t))” for all ¢ € [0, o). To
do this, it is sufficient to prove the following lemma.

Lemma 4. For any set of permissible controls u,(¢) of the pursuers P; either the value of b, is finite
or im T = o when b — .

Proof. Consider the case when ¢ = 1. Only one of two cases is possible for each set of permissible controls u,(¢).
Case 1. Algorithm (2.8)—(2.10) is applied a finite number of times and therefore the value of b, is finite.
Case 2. Algorithm (2.8)-(2.10) is applied an infinite number of times. It is required to show that the sequence

{t}}7 - ; obtained using this formula possesses the followmg property: limtj = o when b — . Let us assume that
the opposite is true: a set of permissible controls #;(f) exists such that

. 1
limt, = t* <co when b oo
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1. We consider the numbers xﬁ?‘l)(t*). Suppose they take r e / different values &; < &, < ... < &;. Without loss
of generality, we will assume that

A% = &, seS,, where
Sk = {sk—1+1’sk—l+2""’sk}’ k=12 ..r (SO=O,sr=n)

For each € = [0, t*], we define the sets

Hye) = Ufze R :z=x""D),te [t*-e,1*1}, k=1,2,...,r

K

Suppose Gy, G, C R'. We will use the notation

dist(G,, G,) = inf  |g;-g,
8, €G,8€G,

h(e) = min{dist(H,(€), H, ,(e)).k=1,2,...,r-1}
H(ge) = h(e)-2v,e, ee {0, 1*]

By virtue of the continuity of the function H(g) and the condition 4(0) > 0, we obtain that a £; > 0 exists such that
H(g) > 0 for all € € [0, (] and, from this, that

h(e)/y,>2¢ forall ee[0,¢] (2.11)

2. If |Si| = 1, we put €% = . Suppose |S;| 22 and o, B € .
We note that

1 -1
A5 P = 55V = &, 2.12)
Using the notation 7 = [t* —¢, ), T = [t* — ¢, 1*], we pick out all possible cases of the mutual ordering of the

values x{7-Y xg%_ D, x@ x(l%)
o ’ ’ o’ .
21 x 5‘&)(1*) > x(ff;)(‘t*) and, by virtue of the continuity of these functions, and € > 0 exists such that

x}:’,’(t)>x“"(:) teT
Furthermore, when account is taken of equality (2.12), we have
A<t 0, e
22) x}‘g(t*) < x(qu)(r*) and, in the same way as in case (2.1), an £ > 0 exists, such that
B2 <xB@, teT, A8 0>A84 ), ter

23) x%‘(’)(‘c*) = x(l%)(t*) and this case has several versions:

(23.1) ane > 0 exists such that x{9(z) = x(q)(t), t e T and, then, x{4-D(r) = x(q D), t e T also.

(23.2) ane > 0 exists such that x{9(z) > x(q)(t) t € T and, then, as in case 2.1, xg‘f,t o) <4 e),te T
(2.3.3) an e > 0 exists such thatx(q)(t) < x(q)(t) t € T and, then, as in case 2.2, x(q D) > x(q Ye),te T.

Now, on picking out all the x("’l) @, 5 e S in pairs as x(4-b x(‘f{l) <‘1) %)’ we obtain that a €5 > 0 exists
such that the natural ordering of x(" 1, and x("), s € S does not change in the interval [t* — €%, 1*). Without loss
of generality, this last fact means that

RO T B AR ORI B!

l.\'k +1 Is,

@ @ @ , 1€ [t*-g5,T*) (2.13)
xlzk +l(t){>=}xl‘.lv,(_,+2(t)"'{>=}xlz'k(t)

Here, {<=}, {>=} means thatk either the <(>) sign or the = sign is chosen in the first (second) row of the formula

over the whole interval [t* - €}, *).
We choose €, = min{e}, €3, ... , &,} > 0.
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3. It follows from the continuity of x(l‘?(t) that a € > 0 exists such that
‘x(ﬂ)(t* -€)- x(,’f’(‘t* - s")' <p/4 forall €,e"€ [0, sg) (2.19)
We now take e; = min{e}, €2, ... , €3} > 0.
4. We define
e* = min{g, €,,€;}>0 (2.15)
It follows from the assumptlon of the existence of a finite limit of the  sequence {’tb}b o that, up to the instant
T —g* < 1%, the control Dl(l) is defined and a number N exists such that £3, 1y, 1, ... € [t* -¢*, t*] where, according
to Lemma 3, {tb}b 0 CHAnlr =0
We will now consider a game I starting from the instant t* — ¢* and we will prove that a number M is found
t%N+ > 1* and by this means we obtain a contradiction to the supposition concerning a finite value of lim )
when b — =, and the lemma will be proved

So, the instant ty e [1* —e*, ). It is necessary that y(q 1)(tN) € Hy(e*) foracertaink e {1, 2, ..., r}.
We recall that

{70y e Hye*), te[t*-e%1*), se S,

and that just one ot € S, exist such that y9-D(e}) = x{0-D(l).

If follows from condltlon (2.2) that two cases are p0551ble
(4.1) vi(ty) 2 xi") (t)) + p1, where o is one of the several successive subscripts from Sj.
It follows from the Lemma 3 that

1
V(ty) - P A SV S V(1) +p1/4, 1€ [ty tyyy)
Taking account of relations (2.14) and (2.15), we conclude from this that
v,(1)>x\D(r)+p,/2 forall te [t,lv, thet) (2.16)

According to relation (2.13), one of the following two equalities must be satisfied at the instant thon
“4.11) y q”l)(t}\H )= x(q"l)(t}H 1) and this case is impossible by virtue of inequality (2.16);

(4.1.2) Y8 Dty 1) = 2% V(th 4 1), B > o (B is one or several successive subscripts from S.).
So, the case 4.1.2 remams Consider the system of inequalities

Dty ) - x“”(t)| =L v.(t)—— 00> 0@, 1€ 11,0 2.17)

The correctness of the first inequality follows from relations (2.14) and (2.15), and the correctness of the second
chain of inequalities follows from relations (2.16) an d(2.13). From system (2.17), we obtain that

V(1) > Jnc(,"p)(t,lv+ AP, teltyty, )
and, therefore, the value of ol(t}v +1), according to algorithm (2.8)—(2.10), will be defined so that

1 (q), 1
Vilty e ) ZX15 (000 1)+ Py
Continuing further, we obtain that an instant t + 1 exists such that

(q b -

I 1 (q), 1
(’N+L) Xis, Unvar)s Oy 2x55 0y )+ 0y

from which we obtain that

(g-1) (g-1) 1
Xy (1) <y (1), te(ty,pt*], se 8,

This means that, in order for t} . ; 41 € [t* - €*, T*), it is necessary that the following inequality be satisfied

(q n (q 1

(tN+L+l) =X (tN+L+1) ne ns;

and this means that the value of - D from the set Hi(e*) must fall within the set Hy 1(e*). It follows from equality
(2.11) that, even in the case of the max1mum value of Yy which, according to Lemma 3, is equal to vy, a time greater
than 2e* is required for this, from which INsL+1—tver > 2% So, anumber M = L + 1:tk 4 5 > T exists.
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(4.2) vi(th) < x§‘2 (tN) - p1. The existence of the number M is proved in the same way.
The case ¢ = 2 is treated similarly. The lemma is proved.

It follows from Lemma 3 and 4 that the inclusion
v(t)e [8.-p. /4,71 forall te [0,o) (2.18)

is satisfied in the case of the functions v,.
The strategy of the evader E is therefore determined; at each instant of time ¢ 2 0, the evader E;
determines the functions v,(f) and v,(f) and thereby completely defines his control v(?).

Theorem 1. In game T', when m = 1, weak evasion from any initial positions occurs.

Proof. We will now prove that the strategy of the evader, defined by algorithm (2.8)—(2.10), is a eak
evasion strategy. Actually, the control v l?elongs to the class of piecewise-constant functions and changes
in value at the instants {13}, , U {13},> ,. Using relations (2.18) and (2.1), we obtain

loll < J¥i+75 <y

The satisfaction of the condition xl(')(t) #y"(t) for all r € Q and ¢ > 0 follows from Lemmas 3 and 4.

3. THE CASE WHEN m2>2

We will now define a weak evasion strategy for a group of coordinated evaders E;.
Theorem 2. In game T, a weak evasion occurs from any initial positions.

Proof. We define a game I'; of nm + 1 players in the space R': nm pursuers P{ and an evader with
laws of motion and initial conditions (when ¢ = 0)

g = Sty = el <y

D0y = xP-¥8, x20) = X%, yP0) =0, BeQ, aePQ

X

(.1)

For all permissible controls u;, w, numbers r € Q and ¢ > 0, we have

t
x)(0) = Y 2 O+ -0 Ny(rydn =

k=r 0

. g-1 p-1 !
= Z(Xf.‘—Yf)t“‘"] = 2 Xf.‘t“"’]+J(t—r)[p"'1]ui(t)dt
k=r k=q 0

t
¥ = Ja-0 wrydn
0
In game I'y, the pursuers act in the following way: at each instant of time ¢ € [0, <), each of the pursuers

P} uses the same control u;(t), chosen by the pursuer P, in the game I'. In this case, the following equality
holds

g-1
%0 = 2P+ Yy (3.2)
k=r

Suppose w(t) is a control which ensures a weak evasion in the game I'y, which has been chosen by
the evader at the instant of time ¢, Then,

£ =y ) (3.3)

i
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The existence of such a control follows from Theorem 1.
We will now determine the control of the evaders E; at each instant of time ¢ 2 0 in the following

way: v(f) = w(t). In this case,

g-1
Wiy =y"w+ Y v (3.4)

k=r
Combining relations (3.2), (3.3) and (3.4), we obtain that

@) %y, e [0,0)
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